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Overview

• Introduction
– Background
– Motivation

• Theoretical formulation
– Geometrically nonlinear beam
– Unsteady aerodynamics
– Flight dynamic modeling

• Numerical studies
• Concluding remarks
• Ongoing and future developments
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Aerodynamic Efficiency and
Wing Aspect-Ratio
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What about Structural Design?

• U.S. Air Force Sensorcraft studies
– High-altitude, long-endurance
– Unmanned vehicles
– Sensor platform
– Very high fuel fractions (up to 60%)

• Very light structures
– Not necessarily carry fuel, but…
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AeroVironment’s Helios
>24 hrs
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What’s Challenging?

• Large wing deformation
– Linear solution might not be sufficient
– Nonlinear solution needed

• Coupling between wing oscillation 
and rigid-body motion
– Coupled transient response
– Body freedom flutter

• Other effects
– Low Reynolds flights
– Local transonic effects
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Need an integral solution for nonlinear aeroelasticity + flight dynamics
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Objectives

• Create a low-order aeroelastic and flight dynamic framework
– Effectively represent dynamic behavior of highly flexible vehicle
– Efficient solution
– Facilitate active aeroelastic tailoring and control studies

• Explore structural, aerodynamic, and control techniques to 
enhance flight efficiency and performance
– Reduce drag
– Reduce power consumption
– Suppress instability
– Reject air disturbance
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Coupled Nonlinear Aeroelasticity and Flight 
Dynamics
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Coupled
Aeroelasticity &
Flight Dynamics

• Reduced-order
• Wing bending / twist 
• Airfoil camber d.o.f.

Geometrically 
Nonlinear Beam
Geometrically 

Nonlinear Beam

Structural 
Dynamics
Structural 
Dynamics

• Composites 
• Active materials

Cross-Sectional 
Analysis

Cross-Sectional 
Analysis

Solid 
Mechanics

Solid 
Mechanics

• Potential flow theory
• 3-D corrections
• Stall models
• Gust/turbulence models

Finite-State 
Inflow Theory
Finite-State 

Inflow Theory

AerodynamicsAerodynamics

Rigid-Body 
Dynamics
Rigid-Body 
Dynamics

Flight 
Dynamics

Flight 
Dynamics

A simplified aeroelastic/flight dynamics simulation system
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Reduced-Order Structural Modeling

• From 3D elastic problem to 2D beam cross-sectional analysis and 1D 
beam model

• Dimensional reduction using the Variational-Asymptotic Method:
– Active thin-walled solution (mid-line discretization)
– VABS (finite-element discretization)
– User defined stiffness constants
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Basic Coordinate Systems

• Global frame (G)
• Body frame (B) – origin not 

necessary to be C.G. of vehicle
• Body frame motion variables

• Local beam frame (w)
• Auxiliary local frame (b)
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Strained-Based Geometrically Nonlinear 
Beam Formulation

• Geometrically nonlinear beam formulation[1]

• Four local strain degrees-of-freedom (ε): extension, twist, flatwise 
bending, and chordwise bending

• Constant-strain elements
• Capture large complex deformations with fewer

elements – computationally efficient
• Isotropic and anisotropic constitutive relations
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[1] Su, W., and Cesnik, C.E.S., “Strain-Based Geometrically Nonlinear Beam Formulation for Modeling 
Very Flexible Aircraft,” International Journal of Solids and Structures, Vol. 48, No. 16-17, 2011, pp. 2349-
2360. (doi: 10.1016/j.ijsolstr.2011.04.012)

Sample element deformations 
with constant strain

Strains () and body velocities ()
are independent variables
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Formulation Based on Principle of Virtual 
Work
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+

• Inertia force, internal strain, and strain rate
• Gravity loads, distributed loads, and point 

loads
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Recovery of Nodal Displacement

• Solution of displacement-strain equation:

• Marching kinematics in complete aircraft
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Unsteady Aerodynamics

• 2-D Theodorsen-like unsteady aerodynamics (Peters et al., 94, 95)

• Glauert expansion of inflow velocity
as function of inflow states, λn

• Finite state differential equation is transformed to independent 
variables  and 
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Finite-State Inflow Theory: Modifications

• Aerodynamic coefficient modifications based on XFoil (Re 
effects) or CFD calculations

• Compressibility accounted for by Prandtl-Glauert correction

• Spanwise aerodynamic corrections
(3-D effects)

• Simplified stall model

14

Additional aerodynamic development in progress
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• Fixed region in space
• Amplitude distribution

– Peak at center and zero at boundary
– Possibly different distribution in East

and North directions
– Smooth transition

• Time variation: 1-cosine with
different temporal durations

Discrete Non-uniform Gust Model
15
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Dryden Gust Model

• Gust PSD function

• ωm: Frequency component (rad/s)
• U0: Free stream velocity (m/s)
• Lw: Scale of turbulence (m), determined by altitude (m)
• Superposition of all frequency components with random phase
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PSD and Time History of Gust Velocity

• Frequency band [0.1~6] Hz
• adjusted to obtain enough

wing deformation
• Uniform spanwise distribution
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Flight Dynamics Modeling
18

The trajectory and orientation of a fixed body reference frame, B, at point O, 
which in general is not the aircraft’s center of mass
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Full Air Vehicle Model for Flight Simulations

• Elastic equations of motion

• Finite-state 2-D unsteady aerodynamics

• Body reference frame propagation
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Numerical Studies

20
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Flutter of Constrained Vehicle

• Similar to constrained wind-tunnel model (no body DOFs)
• Fixed root angle of attack (8 deg)
• Free stream velocity 1% higher than flutter speed

21

Coupled out-of-plane bending/torsion/in-plane bending mode
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Blended-Wing-Body (BWB) Model

• Properties inspired from HiLDA (High Lift over Drag Active 
Wing) wind-tunnel model

22

Elevon: 25% chord
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Comparison of Flutter Modes with Rigid-Body 
Constraints
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All cases trimmed for 6,096 m 
(20,000 ft) altitude, same fuel 
condition

Fully 
constrained 
rigid-body DOFs

Additional 
plunge DOF

With pitch and 
plunge DOFs 
(“same” for free 
flight – 6 DOFs)

Flutter Speed Frequency

Fully 
constrained 

dof’s
172.52 m/s 7.30 Hz

+ plunging 164.17 m/s 7.07 Hz

+ pitching and 
plunging 123.17 m/s 3.32 Hz

Free flight 123.20 m/s 3.32 Hz

Traditional wind-tunnel setup 
maybe non-conservative – need 
rigid-body DOFs in the aeroelastic
analyses, simulations, and tests
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Highly Flexible Flying Wing Model

• Representative of Helios prototype[2]

– Five engines and three pods
– Payloads applied at center pod
– Empty gross mass: 726 kg

24

[2] Patil, M.J., and Hodges, D.H., “Flight Dynamics of Highly Flexible Flying Wings,” Journal of 
Aircraft, Vol. 43, No. 6, 2006, pp. 1790-1798.
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Trim Results and Flight Stability

• Speed: 12.2 m/s at sea level; Payload: 0 – 227 kg (at center pod)
• Linearization about each trimmed condition with increase of payloads
• Root locus for phugoid mode (left: flexible, right: rigid) 
• Unstable phugoid mode for payload > 152 kg
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Payload

[2]

Flexible Rigid

Payload

Zero payload: 
span-loaded

Full payload: 
center-loaded

Nonlinear aeroelastic/flight dynamic characteristics dependent on trim 
conditions
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Non-symmetric Gust Input and Response –
Fully-Loaded Configuration

• Payload: 227 kg; gust region radius: 40 m;
maximum gust center amplitude: 10 m/s

• Non-symmetric discrete  gust distribution:
– gusts mainly applied on right wing

26

2 s gust duration 4 s gust duration 8 s gust duration

Gust duration impacts after-gust flight path
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Instantaneous Vehicle Positions and 
Orientations

• Positions and orientations at  0, 5, 12, 18, 24, and 30 s, 
respectively

27

Flight Direction

8-s gust
4-s gust

2-s gust

Illustration of unstable Phugoid mode



Aeroelasticity and Structural 
Dynamics Research Laboratory

Animation of Vehicle Motion with Gust 
Perturbations
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2-s gust
4-s gust
8-s gust
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Concluding Remarks

• Framework for modeling and analyzing highly flexible aircraft
– Coupled nonlinear aeroelastic/flight dynamic simulation
– Strain-based geometrically-nonlinear beam
– Incompressible unsteady aerodynamics (with compressibility corrections 

and stall models)
– Rigid-body flight dynamics

• Highly flexible aircraft have radically different behavior than 
conventional aircraft
– Coupling between aircraft deformation and rigid-body motions changes 

flutter boundaries
– Flutter boundary in free flight condition may be different from constrained 

flight
– Finite amplitude gust can excite instabilities

29



Aeroelasticity and Structural 
Dynamics Research Laboratory

Concluding Remarks (Cont’d)

• What did we learn from the physics of highly flexible aircraft?
– Operating (trim) condition should be the basis in weight, structural, 

and stability analyses
• Deformed geometry other than the undeformed shape

– Traditional linear solution to highly flexible aircraft aeroelasticity 
might not be sufficient

• Nonlinear solution is required
– Coupling between aeroelasticity and flight dynamics needs to be 

considered
• Aeroelastic models should incorporate the rigid-body motion, and vice 

versa
• Individual solutions might not be appropriate
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Active Aeroelastic Tailoring and Control

• Traditional approach for aerodynamic/flight control

• Drag due to control surfaces
• Conformal wing shape changes

– Integral strain actuation of 
bending/twist

31

NASA Langley MFC Actuator
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Wing Camber Change

• NASA VCCTEF

• Jointly proposed by UA/GA Tech/OSU/MSU
– Full variable camber wing

32
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Recent Development

• Wing cross-sectional warping
– Plate-like modeling capability with beam model
– Augmented EoM with camber degrees (finite-section modes)

• Impact on aeroelasticity, flight dynamics,
and control -> on-going
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Linear Strain Modes

• Approximate solutions using strain modes

• Modes from elastic EOM

• Only take the elastic components of the modes
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Modal Equations
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Highly Flexible Wing

• Beam properties:

• Nonlinear flutter speed: 23 m/s

36

Ref. 3* Current (linear) Current 
(nonlinear)

Velocity (m/s) 32.2 32.2 23.3
Frequency (Hz) 3.60 3.60 1.61

[3] Patil, M.J., Hodges, D.H. and Cesnik, C.E.S., “Nonlinear Aeroelasticity and Flight Dynamics of 
High-Altitude Long-Endurance Aircraft,” Journal of Aircraft, Vol. 38, No. 1, 2001, pp. 88-94.

Length (m) 16
Chord (m) 1
Mass per length (kg/m) 0.75
x-sectional c.g. position 50% chord 
x-sectional shear center 50% chord 
Rotational inertia (kg·m) 0.1
Flat bending rigidity (N·m2) 2.00 × 104

Edge bending rigidity (N·m2) 4.00 × 104

Torsional rigidity (N·m2) 1.00 × 104
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Modal-Based Static Solution

• Convergence of static solutions with different number of modes

• For more discussion:

37

Modes about undeformed shape Modes about deformed shape

2% error

0.5% error 0.5% error

Fewer modes required if modes are obtained about deformed shape

[4] Su, W., and Cesnik, C.E.S., “Strain-Based Analysis for Geometrically Nonlinear Beams: a Modal 
Approach,” Journal of Aircraft, Vol. 51, No. 3, 2014, pp. 890–903. (doi: 10.2514/1.C032477)
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Multi-disciplinary Simulation of Flight Vehicles
38

Closed-loop
Aeroelasticity &
Flight Dynamics

• Reduced-order
• Wing bending / twist 
• Airfoil camber d.o.f.
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Dynamics
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• Piezoelectric actuator
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Mechanics
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Mechanics

• Composites
• Active materials

Cross-Sectional 
Analysis

Cross-Sectional 
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Solid 
Mechanics

Solid 
Mechanics

• Optimal wing shape
• Stability control
• Rejection of air 

disturbance
• Trajectory control

Control 
Algorithm
Control 

Algorithm

ControlControl

• Potential flow theory
• 3-D corrections
• Stall models
• Gust/turbulence models
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An active aero-servo-elastic simulation system
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